\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6 - 2D Apollonius Graphs (Delaunay Graphs of Disks)
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics, 109:25–47, 2001.

[2]

Olivier Devillers. Improved incremental randomized Delaunay triangulation. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 106–115, 1998.

[3]

Menelaos I. Karavelas and Ioannis Z. Emiris. Predicates for the planar additively weighted Voronoi diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-Antipolis, Sophia-Antipolis, May 2002.

[4]

Menelaos I. Karavelas and Ioannis Z. Emiris. Root comparison techniques applied to computing the additively weighted Voronoi diagram. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 320–329, 2003.

[5]

Menelaos Karavelas and Mariette Yvinec. Dynamic additively weighted voronoi diagrams in 2d. In Proc. 10th European Symposium on Algorithms, pages 586–598, 2002.