\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6 - 3D Envelopes
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages

Concepts

conceptEnvelopeTraits_3
 This concept defines the minimal set of geometric predicates and operations needed to compute the envelope of a set of arbitrary surfaces in \( \mathbb{R}^3\). It refines the ArrangementXMonotoneTraits_2 concept. In addition to the Point_2 and X_monotone_curve_2 types and the Has_boundary_category category tag listed in the base concept, it also lists the Surface_3 and Xy_monotone_surface_3 types, which represent arbitrary surfaces and \( xy\)-monotone surfaces, respectively, and some constructions and predicates on these types. Note however, that these operations usually involve the projection of 3D objects onto the \( xy\)-plane. More...