\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.6 - Polynomial
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Polynomial/degree.cpp
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>
int main(){
//construction using shift
Poly_2 x = PT_2::Shift()(Poly_2(1),1,0); // x_0^1
Poly_2 y = PT_2::Shift()(Poly_2(1),1,1); // x_1^1
Poly_2 F // = (11*x^2 + 5*x)*y^4 + (7*x^2)*y^3
= 11 * CGAL::ipower(y,4) * CGAL::ipower(x,2)
+ 5 * CGAL::ipower(y,4) * CGAL::ipower(x,1)
+ 7 * CGAL::ipower(y,3) * CGAL::ipower(x,2);
std::cout << "The bivariate polynomial F: " << F <<"\n"<< std::endl;
PT_2::Degree degree;
PT_2::Total_degree total_degree;
PT_2::Degree_vector degree_vector;
std::cout << "The degree of F with respect to y: "<< degree(F) // = 4
<< std::endl;
std::cout << "The degree of F with respect to x: "<< degree(F,0) // = 2
<< std::endl;
std::cout << "The total degree of F : "<< total_degree(F) // = 6
<< std::endl;
std::cout << "The degree vector of F : "<< degree_vector(F)// = (2,4)
<< std::endl;
}