\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.7 - 2D and Surface Function Interpolation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References

Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom., 22(4):481–504, 1999.


Jean-Daniel Boissonnat and Julia Flötotto. A local coordinate system on a surface. In Proc. 7th ACM Symposium on Solid Modeling and Applications, 2002.


J. L. Brown. Systems of coordinates associated with points scattered in the plane. Comput. Aided Design, 14:547–559, 1997.


G. Farin. Surfaces over Dirichlet tesselations. Comput. Aided Geom. Design, 7:281–292, 1990.


Julia Flötotto. A coordinate system associated to a point cloud issued from a manifold: definition, properties and applications. Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France, 2003.


Hisamoto Hiyoshi and Kokichi Sugihara. Voronoi-based interpolation with higher continuity. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 242–250, 2000.


B. Piper. Properties of local coordinates based on dirichlet tesselations. Computing Suppl., 8:227–239, 1993.


R. Sibson. A vector identity for the Dirichlet tesselation. Math. Proc. Camb. Phil. Soc., 87:151–155, 1980.


R. Sibson. A brief description of natural neighbour interpolation. In Vic Barnet, editor, Interpreting Multivariate Data, pages 21–36. John Wiley & Sons, Chichester, 1981.