\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.7 - 2D Minkowski Sums
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Class and Concept List
Here is the list of all concepts and classes of this package. Classes are inside the namespace CGAL. Concepts are in the global namespace.
[detail level 12]
oNCGAL
|oCGreene_convex_decomposition_2
|oCHertel_Mehlhorn_convex_decomposition_2
|oCOptimal_convex_decomposition_2
|oCPolygon_triangulation_decomposition_2
|oCPolygon_vertical_decomposition_2
|\CSmall_side_angle_bisector_decomposition_2
oCPolygonConvexDecomposition_2A model of the PolygonConvexDecomposition_2 concept is capable of decomposing an input polygon \( P\) into a set of convex sub-polygons \( P_1, \ldots, P_k\), such that \( \cup_{i=1}^{k}{P_k} = P\)
\CPolygonWithHolesConvexDecomposition_2A model of the PolygonWithHolesConvexDecomposition_2 concept is capable of decomposing an input polygon \( P\), which may have holes, into a set of convex sub-polygons \( P_1, \ldots, P_k\), such that \( \cup_{i=1}^{k}{P_k} = P\)