\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.8.2 - L Infinity Segment Delaunay Graphs
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages


 The concept SegmentDelaunayGraphLinfTraits_2 provides traits for constructing the segment Delaunay graph under the \( L_{\infty} \) distance. The segment Delaunay graph is the dual of the segment Voronoi diagram. We stress that we consider the 1-dimensionalization of \( L_{\infty} \) bisectors between two sites which is explained in Section Bisectors and 1-Dimensionalization of the User Manual, and this reflects on the constructed graph (and its dual diagram). These traits should be used in the Gt template parameter of the CGAL::Segment_Delaunay_graph_Linf_2<Gt,DS> and CGAL::Segment_Delaunay_graph_Linf_hierarchy_2<Gt,STag,DS> class templates. The concept is a refinement of SegmentDelaunayGraphTraits_2. In particular, it provides a type Site_2, which must be a model of the concept SegmentDelaunayGraphSite_2. It also provides constructions for sites and several function object types for the predicates. More...