\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.8.2 - 2D Voronoi Diagram Adaptor
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages


 The concept AdaptationPolicy_2 defines the requirements on the predicate functors that determine whether a feature of the triangulated Delaunay graph should be rejected or not. It also provides a functor for inserting sites in the Delaunay graph. The last functor is optional and a tag determines whether it is provided or not. Note that while the first two functors do not modify the Delaunay graph they take as an argument, the last ones does. More...
 The concept AdaptationTraits_2 defines the functors required for accessing geometric information in the Delaunay graph that is needed by the Voronoi_diagram_2<DG,AT,AP> class. It optionally defines a functor for performing nearest site queries. A tag is provided for determining whether this functor is defined or not. More...
 The concept DelaunayGraph_2 defines the requirements for the first template parameter of the Voronoi_diagram_2<DG,AT,AP> class. The DelaunayGraph_2 concept essentially defines the requirements that a class representing a Delaunay graph must obey so that the Voronoi diagram adaptor can adapt it. More...