\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - Bounding Volumes
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. J. Algorithms, 4:61–80, 1983.

[2]

G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: sorted matrices. SIAM J. Comput., 13:14–30, 1984.

[3]

Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses – fast and exact. Serie B – Informatik B 97-03, Freie Universität Berlin, Germany, June 1997.

[4]

B. Gärtner and S. Schönherr. Exact primitives for smallest enclosing ellipses. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 430–432, 1997.

[5]

Bernd Gärtner and Sven Schönherr. Smallest enclosing circles – an exact and generic implementation in C++. Serie B – Informatik B 98-04, Freie Universität Berlin, Germany, April 1998.

[6]

Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses – an exact and generic implementation in C++. Serie B – Informatik B 98-05, Freie Universität Berlin, Germany, April 1998.

[7]

Bernd Gärtner and Svend Schönherr. An efficient, exact, and generic quadratic programming solver for geometric optimization. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 110–118, 2000.

[8]

B. Gärtner. Fast and robust smallest enclosing balls. In Proc. 7th annu. European Symposium on Algorithms (ESA), volume 1643 of Lecture Notes in Computer Science, pages 325–338. Springer-Verlag, 1999.

[9]

M. Hoffmann. A simple linear algorithm for computing rectangular three-centers. In Proc. 11th Canad. Conf. Comput. Geom., pages 72–75, 1999.

[10]

L. Khachiyan. Rounding of polytopes in the real number model of computation. Mathematics of Operations Research, 21(2):307–320, 1996.

[11]

J. Matou v sek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 1–8, 1992.

[12]

Christian Schwarz, Jürgen Teich, Alek Vainshtein, Emo Welzl, and Brian L. Evans. Minimal enclosing parallelogram with application. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C34–C35, 1995.

[13]

Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center problems. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 122–132, 1996.

[14]

G. T. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE MELECON '83, pages A10.02/1–4, 1983.

[15]

A. Vainshtein. Finding minimal enclosing parallelograms. Diskretnaya Matematika, 2:72–81, 1990. In Russian.

[16]

Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results and New Trends in Computer Science, volume 555 of Lecture Notes Comput. Sci., pages 359–370. Springer-Verlag, 1991.