\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Filtered_kernel/Filtered_predicate.cpp
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_predicate.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Cartesian_converter.h>
// Define my predicate, parameterized by a kernel.
template < typename K >
struct My_orientation_2
{
typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;
typedef typename K::Orientation result_type;
result_type
operator()(const Point_2 &p, const Point_2 &q, const Point_2 &r) const
{
RT prx = p.x() - r.x();
RT pry = p.y() - r.y();
RT qrx = q.x() - r.x();
RT qry = q.y() - r.y();
return CGAL::sign( prx*qry - qrx*pry );
}
};
My_orientation_2<FK>, C2E, C2F> Orientation_2;
int main()
{
K::Point_2 p(1,2), q(2,3), r(3,4);
Orientation_2 orientation;
orientation(p, q, r);
return 0;
}