\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - Principal Component Analysis
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Principal_component_analysis/centroid.cpp
// Example program for the centroid() function for 2D points, 3D points and 3D triangles.
#include <CGAL/Simple_cartesian.h>
#include <CGAL/centroid.h>
#include <vector>
#include <iostream>
typedef double FT;
typedef K::Point_2 Point_2;
typedef K::Point_3 Point_3;
typedef K::Triangle_3 Triangle_3;
int main()
{
// centroid of 2D points
std::vector<Point_2> points_2;
points_2.push_back(Point_2(1.0, 0.0));
points_2.push_back(Point_2(2.0, 2.0));
points_2.push_back(Point_2(3.0, 5.0));
Point_2 c2 = CGAL::centroid(points_2.begin(), points_2.end(),CGAL::Dimension_tag<0>());
std::cout << c2 << std::endl;
// centroid of 3D points
std::vector<Point_3> points_3;
points_3.push_back(Point_3(1.0, 0.0, 0.5));
points_3.push_back(Point_3(2.0, 2.0, 1.2));
points_3.push_back(Point_3(3.0, 5.0, 4.5));
Point_3 c3 = CGAL::centroid(points_3.begin(), points_3.end(),CGAL::Dimension_tag<0>());
std::cout << c3 << std::endl;
// centroid of 3D triangles
std::list<Triangle_3> triangles_3;
Point_3 p(1.0, 0.0, 0.0);
Point_3 q(1.0, 2.0, 0.0);
Point_3 r(0.0, 1.0, 3.0);
Point_3 s(0.0, 2.0, 5.0);
triangles_3.push_back(Triangle_3(p,q,r));
triangles_3.push_back(Triangle_3(p,q,s));
c3 = CGAL::centroid(triangles_3.begin(), triangles_3.end(),CGAL::Dimension_tag<2>());
std::cout << c3 << std::endl;
return 0;
}