\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - Linear and Quadratic Programming Solver
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
QP_solver/solve_convex_hull_containment_lp3.h
// example: function to check whether a point is in the convex
// hull of other points; this version uses a maker
#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>
#include <CGAL/QP_options.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_d& p) const {
return p.homogeneous_begin();
}
};
// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
solve_convex_hull_containment_lp (const Point_d& p,
RandomAccessIterator end, const ET& dummy,
{
// construct program and solve it
(static_cast<int>(end-begin), // n
p.dimension()+1, // m
boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator>(begin), // A
typename Point_d::Homogeneous_const_iterator (p.homogeneous_begin()),// b
dummy, o);
}