\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - dD Spatial Searching
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages

Classes

class  CGAL::Euclidean_distance< Traits >
 The class Euclidean_distance provides an implementation of the concept OrthogonalDistance, with the Euclidean distance ( \( l_2\) metric). More...
 
class  CGAL::Euclidean_distance_sphere_point< Traits >
 The class Euclidean_distance_sphere_point provides an implementation of the GeneralDistance concept for the Euclidean distance ( \( l_2\) metric) between a \( d\)-dimensional sphere and a point, and the Euclidean distance between a \( d\)-dimensional sphere and a \( d\)-dimensional iso-rectangle defined as a \(k\)- \(d\) tree rectangle. More...
 
class  CGAL::Manhattan_distance_iso_box_point< Traits >
 The class Manhattan_distance_iso_box_point provides an implementation of the GeneralDistance concept for the Manhattan distance ( \( l_1\) metric) between a d-dimensional iso-box and a d-dimensional point and the Manhattan distance between a d-dimensional iso-box and a d-dimensional iso-box defined as a k-d tree rectangle. More...
 
class  CGAL::Distance_adapter< Key, PointPropertyMap, Base_distance >
 A class that uses a point property map to adapt a distance class to work on a key as point type. More...
 
class  CGAL::Weighted_Minkowski_distance< Traits >
 The class Weighted_Minkowski_distance provides an implementation of the concept OrthogonalDistance, with a weighted Minkowski metric on \( d\)-dimensional points defined by \( l_p(w)(r,q)= ({\Sigma_{i=1}^{i=d} \, w_i(r_i-q_i)^p})^{1/p}\) for \( 0 < p <\infty\) and defined by \( l_{\infty}(w)(r,q)=max \{w_i |r_i-q_i| \mid 1 \leq i \leq d\}\). More...