\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9.1 - 3D Triangulations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Triangulation_3/copy_triangulation_3.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/point_generators_3.h>
struct Convert_vertex{
mutable bool first_vertex;
Convert_vertex():first_vertex(true) {}
DT3_epec::Vertex operator()(const DT3_epic::Vertex&) const { return DT3_epec::Vertex(); }
void operator()(const DT3_epic::Vertex& src,DT3_epec::Vertex& tgt) const
{
if (!first_vertex)
tgt.point() = Converter()( src.point() );
else
first_vertex=false;
}
};
struct Convert_cell{
DT3_epec::Cell operator()(const DT3_epic::Cell&) const { return DT3_epec::Cell(); }
void operator()(const DT3_epic::Cell&,DT3_epec::Cell&) const {}
};
int main()
{
std::vector< EPIC::Point_3> points;
CGAL::Random_points_in_sphere_3<EPIC::Point_3,Creator> g(1.0);
CGAL::cpp11::copy_n( g, 600, std::back_inserter(points) );
DT3_epic dt3_epic(points.begin(), points.end());
DT3_epec dt3_epec;
dt3_epec.set_infinite_vertex(
dt3_epec.tds().copy_tds( dt3_epic.tds(),dt3_epic.infinite_vertex(), Convert_vertex(), Convert_cell() ) );
CGAL_assertion( dt3_epec.is_valid() );
}