\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - Advancing Front Surface Reconstruction
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

Udo Adamy, Joachim Giesen, and Matthias John. The λ-complex and surface reconstruction. In Abstracts 16th European Workshop Comput. Geom., pages 14–17. Ben-Gurion University of the Negev, 2000.

[2]

Nina Amenta and Marshall Bern. Surface reconsruction by Voronoi filtering. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 39–48, 1998.

[3]

N. Amenta, M. Bern, and D. Eppstein. The crust and the β-skeleton: Combinatorial curve reconst ruction. Research Report, Xerox PARC, 1997.

[4]

N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl., 19:127–153, 2001.

[5]

F. Bernardini, J. Mittleman, H. Rushmeir, C. Silva, and G. Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4), 1999.

[6]

Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 223–232, 2000.

[7]

J. W. Brandt. Convergence and continuity criteria for discrete approximations of the continuous planar skeletons. CVGIP: Image Understanding, 59(1):116–124, 1994.

[8]

David Cohen-Steiner and Tran Kai Frank Da. A greedy delaunay-based surface reconstruction algorithm. The Visual Computer, 20:4–16, 2004.

[9]

H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruction. In Proc. SIGGRAPH 94, pages 295–302, 1994.

[10]

G. Medioni, M. Lee, and C. Tang. A computational framework for segmentation and grouping. Elsevier Science , year = 2000 , pages =.

[11]

S. Petitjean and E. Boyer. Regular and non-regular point sets: Properties and reconstruction. Comput. Geom. Theory Appl., 19:101–126, 2001.

[12]

J. A. Sethian. Level Set Methods. Cambridge University Press, 1996.

[13]

H.-K. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit nonparametric shape reconstruction from unorganized points using a variational level set method. Computer Vision and Image Understanding, 80(3), 2000.