\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - 2D Generalized Barycentric Coordinates
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References
[1]

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Proceedings of SIGGRAPH '95, pages 173–182, 1995.

[2]

M. S. Floater, K. Hormann, and G. Kòs. A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics, 24(1-4):311–331, 2006.

[3]

Michael Floater. Mean value coordinates. Computer Aided Design, 20(1):19–27, 2003.

[4]

M. S. Floater. Wachspress and mean value coordinates. In Proceedings of the 14th International Conference on Approximation Theory, G. Fasshauer and L. L. Schumaker (eds.), 2014.

[5]

K. Hormann and M. S. Floater. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics, 25(4):1424–1441, 2006.

[6]

M. Meyer, H. Lee, A. H. Berr, and M. Desbrun. Generalized barycentric coordinates on irregular polygons. Journal of Graphics Tools, 7(1):13–22, 2002.

[7]

A. F. Möbius. Der Barycentrische Calcul. Johann Ambrosius Barth, Leipzig, 1827.

[8]

U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[9]

E. L. Wachspress. A Rational Finite Element Basis. Academic Press, New York, 1975.