Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}} \newcommand{\A}{\mathrm{A}} \newcommand{\R}{\mathrm{R}} \newcommand{\N}{\mathrm{N}} \newcommand{\Q}{\mathrm{Q}} \newcommand{\Z}{\mathrm{Z}} \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL 5.0.1 - 2D Generalized Barycentric Coordinates
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
Barycentric_coordinates_2/Segment_coordinates_example.cpp
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Barycentric_coordinates_2/Segment_coordinates_2.h>
// Namespace alias.
// Some convenient typedefs.
typedef Kernel::FT Scalar;
typedef Kernel::Point_2 Point;
typedef std::array<Scalar,2> Pair;
using std::cout; using std::endl; using std::string;
int main()
{
// Construct a segment.
const Point first_vertex(0, Scalar(2)/Scalar(5));
const Point second_vertex(2, Scalar(2)/Scalar(5));
// Instantiate three interior and two exterior query points.
const Point query_points[5] = { Point(Scalar(2) /Scalar(5), Scalar(2)/Scalar(5)), // interior query points
Point(1 , Scalar(2)/Scalar(5)),
Point(Scalar(8) /Scalar(5), Scalar(2)/Scalar(5)),
Point(Scalar(-1)/Scalar(5), Scalar(2)/Scalar(5)), // exterior query points
Point(Scalar(11)/Scalar(5), Scalar(2)/Scalar(5))
};
// Compute segment coordinates for all the defined points.
// We use a global function and return the segment coordinates stored in an array of the type std::array<FT,2>.
cout << endl << "Computed segment coordinates: " << endl << endl;
for(int i = 0; i < 5; ++i) {
const Pair pair = BC::compute_segment_coordinates_2(first_vertex, second_vertex, query_points[i], Kernel());
// Output both coordinates for each point.
cout << "Pair of coordinates # " << i + 1 << " = (" << pair[0] << ", " << pair[1] << ");" << endl;
}
cout << endl;
return EXIT_SUCCESS;
}