\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.2 - 2D Periodic Hyperbolic Triangulations
Bibliography
[1]

Mikhail Bogdanov, Monique Teillaud, and Gert Vegter. Delaunay triangulations on orientable surfaces of low genus. In Proceedings of the Thirty-second International Symposium on Computational Geometry, pages 20:1–20:17, 2016.

[2]

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. Internat. J. Found. Comput. Sci., 13:181–199, 2002.

[3]

Iordan Iordanov and Monique Teillaud. Implementing Delaunay triangulations of the Bolza surface. In Proceedings of the Thirty-third International Symposium on Computational Geometry, pages 44:1–44:15, 2017.