\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.3 - Bounding Volumes
Rectangular_p_center_2/rectangular_p_center_2.cpp
#include <CGAL/Simple_cartesian.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/rectangular_p_center_2.h>
#include <CGAL/IO/Ostream_iterator.h>
#include <CGAL/algorithm.h>
#include <iostream>
#include <algorithm>
#include <vector>
typedef double FT;
typedef Kernel::Point_2 Point;
typedef std::vector<Point> Cont;
typedef CGAL::Random_points_in_square_2<Point> Generator;
int main()
{
int n = 10;
int p = 2;
OIterator cout_ip(std::cout);
Cont points;
std::copy_n(Generator(1), n, std::back_inserter(points));
std::cout << "Generated Point Set:\n";
std::copy(points.begin(), points.end(), cout_ip);
FT p_radius;
std::cout << "\n\n" << p << "-centers:\n";
points.begin(), points.end(), cout_ip, p_radius, 3);
std::cout << "\n\n" << p << "-radius = " << p_radius << std::endl;
return 0;
}