\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.3 - 2D Convex Hulls and Extreme Points
Bibliography
[1]

S. G. Akl and G. T. Toussaint. A fast convex hull algorithm. Inform. Process. Lett., 7(5):219–222, 1978.

[2]

K. R. Anderson. A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 7(1):53–55, 1978.

[3]

A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inform. Process. Lett., 9(5):216–219, 1979.

[4]

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483, December 1996.

[5]

A. Bykat. Convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 7:296–298, 1978.

[6]

W. F. Eddy. A new convex hull algorithm for planar sets. ACM Trans. Math. Softw., 3:398–403 and 411–412, 1977.

[7]

R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 1:132–133, 1972.

[8]

R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett., 2:18–21, 1973.

[9]

Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry, volume 3 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, Germany, 1984.

[10]

A. Melkman. On-line construction of the convex hull of a simple polyline. Inform. Process. Lett., 25:11–12, 1987.

[11]

J. Sklansky. Measuring concavity on rectangular mosaic. IEEE Trans. Comput., C-21:1355–1364, 1972.