\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.3 - Manual
Bibliography
[1]

David Abrahams. Exception-safety in generic components. In Mehdi Jazayeri, Rüdiger Loos, and David R. Musser, editors, Generic Programming, volume 1766 of Lecture Notes in Computer Science, pages 69–79. Springer, 1998.

[2]

Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1998.

[3]

International standard ISO/IEC 14882: Programming languages – C++. American National Standards Institute, 11 West 42nd Street, New York 10036, 1998.

[4]

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL a computational geometry algorithms library. Softw. – Pract. Exp., 30(11):1167–1202, 2000.

[5]

Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel. An adaptable and extensible geometry kernel. In Proc. Workshop on Algorithm Engineering, volume 2141 of Lecture Notes Comput. Sci., pages 79–90. Springer-Verlag, 2001.

[6]

Stanley B. Lippman and Josee Lajoie. C++ Primer. Addison-Wesley, 3rd edition, 1998.

[7]

Scott Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and Designs. Addison-Wesley, 2nd edition, 1997.

[8]

Nathan C. Myers. Traits: a new and useful template technique. C++ Report, June 1995.

[9]

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition, 1997.

[10]

G. T. Toussaint. Movable separability of sets. In G. T. Toussaint, editor, Computational Geometry, pages 335–375. North-Holland, Amsterdam, Netherlands, 1985.

[11]

J. Vleugels. On Fatness and Fitness — Realistic Input Models for Geometric Algorithms. Ph.D. thesis, Dept. Comput. Sci., Univ. Utrecht, Utrecht, The Netherlands, 1997.

[12]

Shi-Qing Xin and Guo-Jin Wang. Improving chen and han's algorithm on the discrete geodesic problem. ACM Trans. Graph., 28(4):104:1–104:8, September 2009.