\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.3 - Triangulated Surface Mesh Deformation
Bibliography
[1]

Mario Botsch and Olga Sorkine. On linear variational surface deformation methods. Visualization and Computer Graphics, IEEE Transactions on, 14(1):213–230, 2008.

[2]

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Lévy, and others. Polygon mesh processing. A K Peters, Ltd., 2010.

[3]

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. A simple geometric model for elastic deformations. In ACM SIGGRAPH 2010 papers, SIGGRAPH '10, pages 38:1–38:6. ACM, 2010.

[4]

Zohar Levi and Craig Gotsman. Smooth rotation enhanced as-rigid-as-possible mesh animation. IEEE Transactions on Visualization & Computer Graphics, 2015.

[5]

Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conjugates. Experimental mathematics, 2(1):15–36, 1993.

[6]

Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In ACM International Conference Proceeding Series, volume 257, pages 109–116. Citeseer, 2007.

[7]

Olga Sorkine. Least-squares rigid motion using SVD, 2009.