\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - 2D Arrangements
Arrangement_on_surface_2/aggregated_insertion.cpp
// Using the global aggregated insertion functions.
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <list>
typedef CGAL::Quotient<int> Number_type;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
int main ()
{
// Construct the arrangement of five intersecting segments.
Arrangement_2 arr;
std::list<Segment_2> segments;
segments.push_back(Segment_2(Point_2(1, 0), Point_2(2, 4)));
segments.push_back(Segment_2(Point_2(5, 0), Point_2(5, 5)));
segments.push_back(Segment_2(Point_2(1, 0), Point_2(5, 3)));
segments.push_back(Segment_2(Point_2(0, 2), Point_2(6, 0)));
segments.push_back(Segment_2(Point_2(3, 0), Point_2(5, 5)));
insert(arr, segments.begin(), segments.end());
// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
return 0;
}