\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - 2D and Surface Function Interpolation
Interpolation/nn_coordinates_2.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>
#include <iostream>
#include <iterator>
#include <utility>
#include <vector>
typedef K::FT Coord_type;
typedef K::Point_2 Point;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation;
// Resulting points-coordinates pairs will be stored in an object of this type
typedef std::vector<std::pair<Point, Coord_type> > Point_coordinate_vector;
int main()
{
Delaunay_triangulation dt;
for(int y=0; y<3; ++y)
for(int x=0; x<3; ++x)
dt.insert(K::Point_2(x, y));
// coordinates computation
K::Point_2 p(1.2, 0.7); // query point
Point_coordinate_vector coords;
CGAL::natural_neighbor_coordinates_2(dt, p, std::back_inserter(coords));
if(!result.third)
{
std::cout << "The coordinate computation was not successful." << std::endl;
std::cout << "The point (" << p << ") lies outside the convex hull." << std::endl;
}
K::FT norm = result.second;
std::cout << "Coordinate computation successful." << std::endl;
std::cout << "Normalization factor: " << norm << std::endl;
std::cout << "Coordinates for point: (" << p << ") are the following: " << std::endl;
for(std::size_t i=0; i<coords.size(); ++i)
std::cout << " Point: (" << coords[i].first << ") coeff: " << coords[i].second << std::endl;
return EXIT_SUCCESS;
}