Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\E}{\mathrm{E}}
\newcommand{\A}{\mathrm{A}}
\newcommand{\R}{\mathrm{R}}
\newcommand{\N}{\mathrm{N}}
\newcommand{\Q}{\mathrm{Q}}
\newcommand{\Z}{\mathrm{Z}}
\def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }
CGAL Version:
master
6.0.1
latest
5.6.2
5.5.5
5.4.5
5.3.2
5.2.4
5.1.5
5.0.4
4.14.3
4.13.2
4.12.2
4.11.3
4.10.2
4.9.1
4.8.2
4.7
4.6.3
4.5.2
4.4
4.3
5.0
cgal.org
Top
Getting Started
Tutorials
Package Overview
Acknowledging CGAL
CGAL 5.0 - Linear and Quadratic Programming Solver
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Friends
Modules
Pages
QP_solver/first_qp_from_mps.cpp
// example: read quadratic program in MPS format from file
// the QP below is the first quadratic program example in the user manual
#include <iostream>
#include <fstream>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
// choose exact integral type
#ifdef CGAL_USE_GMP
#include <
CGAL/Gmpz.h
>
typedef
CGAL::Gmpz
ET;
#else
#include <
CGAL/MP_Float.h
>
typedef
CGAL::MP_Float
ET;
#endif
// program and solution types
typedef
CGAL::Quadratic_program_from_mps<int>
Program;
typedef
CGAL::Quadratic_program_solution<ET>
Solution;
int
main() {
std::ifstream in (
"first_qp.mps"
);
Program qp(in);
// read program from file
assert (qp.is_valid());
// we should have a valid mps file
// solve the program, using ET as the exact type
Solution s =
CGAL::solve_quadratic_program
(qp, ET());
// output solution
std::cout << s;
return
0;
}