CGAL 5.1.1 - Planar Parameterization of Triangulated Surface Meshes
Bibliography
[1]

Noam Aigerman and Yaron Lipman. Orbifold tutte embeddings. ACM Transactions on Graphics, 34(6):190, 2015.

[2]

Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations of surface meshes. Computer Graphics Forum, 21(3):209–218, September 2002.

[3]

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In Computer Graphics (Proc. SIGGRAPH '95), volume 29, pages 173–182,

  1. Examples in ftp://ftp.cs.washington.edu/pub/graphics.

[4]

Michael Floater. Mean value coordinates. Computer Aided Design, 20(1):19–27, 2003.

[5]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6]

Z Kami, Craig Gotsman, and Steven J Gortler. Free-boundary linear parameterization of 3d meshes in the presence of constraints. In International Conference on Shape Modeling and Applications 2005 (SMI'05), pages 266–275. IEEE, 2005.

[7]

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares conformal maps for automatic texture atlas generation. In Proceedings of the 29th Conference on Computer Graphics and Interactive Techniques SIGGRAPH, volume 21(3) of ACM Transactions on Graphics, pages 362–371, 2002.

[8]

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J Gortler. A local/global approach to mesh parameterization. In Computer Graphics Forum, volume 27, pages 1495–1504. Wiley Online Library, 2008.

[9]

U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[10]

W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society, 13(52):743–768, 1963.