CGAL 5.3 - dD Triangulations
barycentric_subdivision.cpp
#include <CGAL/Triangulation_data_structure.h>
#include <CGAL/Combination_enumerator.h>
#include <CGAL/assertions.h>
#include <iostream>
#include <iterator>
#include <vector>
template< typename TDS >
void find_face_from_vertices(const TDS & tds,
const std::vector<typename TDS::Vertex_handle> & face_vertices,
typename TDS::Face & face);
template< typename TDS >
void barycentric_subdivide(TDS & tds, typename TDS::Full_cell_handle fc)
{ /* This function builds the barycentric subdivision of a single
full cell |fc| from a triangulation data structure |tds|. */
typedef typename TDS::Vertex_handle Vertex_handle;
typedef typename TDS::Face Face;
const int dim = tds.current_dimension();
// First, read handles to the cell's vertices
std::vector<Vertex_handle> vertices;
std::vector<Vertex_handle> face_vertices;
for( int i = 0; i <= dim; ++i ) vertices.push_back(fc->vertex(i));
// Then, subdivide the cell |fc| once by inserting one vertex
tds.insert_in_full_cell(fc);
// From now on, we can't use the variable |fc|...
// Then, subdivide faces of |fc| in order of decreasing dimension
for( int d = dim-1; d > 0; --d )
{
face_vertices.resize(d+1);
// The following class
// enumerates all (d+1)-tuple of the set {0, 1, ..., dim}
CGAL::Combination_enumerator<unsigned int> combi(d+1, 0, dim);
while ( !combi.finished() )
{
for( int i = 0; i <= d; ++i )
face_vertices[i] = vertices[combi[i]];
// we need to find a face with face_vertices
Face face(dim);
find_face_from_vertices(tds, face_vertices, face);
tds.insert_in_face(face);
++combi;
}
}
}
template< typename TDS >
void find_face_from_vertices( const TDS & tds,
const std::vector<typename TDS::Vertex_handle> & face_vertices,
typename TDS::Face & face)
{ /* The main goal of this function is to find a full cell that
contains a given set of vertices |face_vertices|. Then, it
builds a corresponding |face|. */
typedef typename TDS::Vertex_handle Vertex_handle;
typedef typename TDS::Full_cell_handle Full_cell_handle;
typedef typename TDS::Full_cell::Vertex_handle_iterator Vertex_h_iterator;
// get the dimension of the face we want to build
std::size_t fdim(face_vertices.size() - 1);
if( fdim <= 0) exit(-1);
// find all full cells incident to the first vertex of |face|
typedef std::vector<Full_cell_handle> Cells;
Cells cells;
std::back_insert_iterator<Cells> out(cells);
tds.incident_full_cells(face_vertices[0], out);
// Iterate over the cells to find one which contains the face_vertices
for( typename Cells::iterator cit = cells.begin(); cit != cells.end(); ++cit){
// find if the cell *cit contains the Face |face|
std::size_t i = 0;
for( ; i <= fdim; ++i ) {
Vertex_handle face_v(face_vertices[i]);
bool found(false);
Vertex_h_iterator vit = (*cit)->vertices_begin();
for( ; vit != (*cit)->vertices_end(); ++vit ) {
if( *vit == face_v ) {
found = true;
break;
}
}
if( ! found )
break;
}
if( i > fdim ) {// the full cell |*cit| contains |face|
face.set_full_cell(*cit);
for( std::size_t i = 0; i <= fdim; ++i )
{
face.set_index(static_cast<int>(i),
(*cit)->index(face_vertices[i]));
}
return;
}
}
std::cerr << "Could not build a face from vertices"<<std::endl;
CGAL_assertion(false);
}
int main()
{
const int sdim = 5; // dimension of TDS with compile-time dimension
TDS;
TDS tds(sdim);
TDS::Vertex_handle one_vertex = tds.insert_increase_dimension();
for( int i = 1; i < sdim+2; ++i )
tds.insert_increase_dimension(one_vertex);
// we get a triangulation of space of dim sdim homeomorphic to
// the boundary of simplex of dimension sdim+1 with sdim+2 vertices
CGAL_assertion( sdim == tds.current_dimension() );
CGAL_assertion( 2+sdim == tds.number_of_vertices() );
CGAL_assertion( 2+sdim == tds.number_of_full_cells() );
barycentric_subdivide(tds, tds.full_cells_begin());
// The number of full cells should be twice the factorial of
// |tds.current_dimension()+1|. Eg, 1440 for dimension 5.
std::cout << "Triangulation has "
<< tds.number_of_full_cells() << " full cells";
CGAL_assertion( tds.is_valid() );
std::cout << " and is valid!"<<std::endl;
return 0;
}