CGAL 5.4.4 - 2D Arrangements
Arrangement_on_surface_2/algebraic_curves.cpp
// Constructing an arrangement of algebraic curves.
#include <iostream>
#include <CGAL/config.h>
#if (!CGAL_USE_CORE) && (!CGAL_USE_LEDA) && (!(CGAL_USE_GMP && CGAL_USE_MPFI))
int main ()
{
std::cout << "Sorry, this example needs CORE, LEDA, or GMP+MPFI ..."
<< std::endl;
return 0;
}
#else
#include <CGAL/basic.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_algebraic_segment_traits_2.h>
#include "integer_type.h"
#include "arr_print.h"
typedef CGAL::Arrangement_2<Traits> Arrangement;
typedef Traits::Curve_2 Curve;
typedef Traits::Polynomial_2 Polynomial;
int main() {
CGAL::IO::set_pretty_mode(std::cout); // for nice printouts.
Traits traits;
Arrangement arr(&traits);
// Functor to create a curve from a Polynomial.
auto construct_cv = traits.construct_curve_2_object();
Polynomial x = CGAL::shift(Polynomial(1), 1, 0);
Polynomial y = CGAL::shift(Polynomial(1), 1, 1);
// Construct an unbounded line (C1) with the equation 3x - 5y - 2 = 0.
Polynomial f1 = 3*x - 5*y - 2;
Curve cv1 = construct_cv(f1);
std::cout << "Inserting curve " << f1 << std::endl;
CGAL::insert(arr, cv1);
// Construct the ellipse (C2) with the equation x^2 + 3*y^2 - 10 = 0.
Polynomial f2 = CGAL::ipower(x, 2) + 3*CGAL::ipower(y, 2) - 10;
Curve cv2 = construct_cv(f2);
std::cout << "Inserting curve " << f2 << std::endl;
CGAL::insert(arr, cv2);
// Construct a cubic curve (C3) with the equation x^2 + y^2 + xy^2 = 0,
// with isolated point at (0,0) and vertical asymptote at x = 1.
Polynomial f3 = CGAL::ipower(x, 2) + CGAL::ipower(y, 2) +
x*CGAL::ipower(y, 2);
Curve cv3 = construct_cv(f3);
std::cout << "Inserting curve " << f3 << std::endl;
CGAL::insert(arr, cv3);
// Construct a curve of degree 6 (C4) with the equation
// x^6 + y^6 - x^3y^3 - 12 = 0.
Polynomial f4 = CGAL::ipower(x, 6) + CGAL::ipower(y, 6) -
CGAL::ipower(x, 3)*CGAL::ipower(y, 3) - 12;
Curve cv4 = construct_cv(f4);
std::cout << "Inserting curve " << f4 << std::endl;
CGAL::insert(arr, cv4);
print_arrangement_size(arr); // print the arrangement size
return 0;
}
#endif