CGAL 5.4.4 - 2D and 3D Linear Geometry Kernel
|
H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics, 109:25–47, 2001.
C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. IEEE Computer, 22(3):31–41, March 1989.
C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo, CA, 1989.
Guillaume Melquiond and Sylvain Pion. Formal certification of arithmetic filters for geometric predicates. In Proc. 17th IMACS World Congress on Scientific, Applied Mathematics and Simulation, 2005.
Stefan Schirra. Robustness and precision issues in geometric computation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, chapter 14, pages 597–632. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.
C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on Computing, pages 452–492. World Scientific, Singapore, 2nd edition, 1995.
C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3–23, 1997.