CGAL 5.4.4 - 2D Triangulations on the Sphere
Triangulation_on_sphere_2/triang_on_sphere_proj.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_on_sphere_2.h>
#include <CGAL/Projection_on_sphere_traits_3.h>
#include <boost/iterator/transform_iterator.hpp>
typedef Traits::Point_3 Point_3;
int main(int, char**)
{
std::vector<Point_3> points;
points.emplace_back( 3, 1, 1);
points.emplace_back(-8, 1, 1);
points.emplace_back( 1, 2, 1);
points.emplace_back( 1, -2, 1);
points.emplace_back( 1, 1, 10);
Traits traits(Point_3(1,1,1)); // radius is 1 by default
DToS2 dtos(traits);
Traits::Construct_point_on_sphere_2 cst = traits.construct_point_on_sphere_2_object();
for(const auto& pt : points)
{
std::cout << "----- Inserting (" << pt
<< ") at squared distance " << CGAL::squared_distance(pt, traits.center())
<< " from the center of the sphere" << std::endl;
dtos.insert(cst(pt));
std::cout << "The triangulation now has dimension: " << dtos.dimension() << " and\n";
std::cout << dtos.number_of_vertices() << " vertices" << std::endl;
std::cout << dtos.number_of_edges() << " edges" << std::endl;
std::cout << dtos.number_of_faces() << " solid faces" << std::endl;
std::cout << dtos.number_of_ghost_faces() << " ghost faces" << std::endl;
}
CGAL::IO::write_OFF("result.off", dtos, CGAL::parameters::stream_precision(17));
return EXIT_SUCCESS;
}