CGAL 5.4.5 - 2D Generalized Barycentric Coordinates
Barycentric_coordinates_2/mean_value_coordinates.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Barycentric_coordinates_2/Mean_value_coordinates_2.h>
// Typedefs.
using FT = Kernel::FT;
using Point_2 = Kernel::Point_2;
int main() {
// Construct a star-shaped polygon.
const std::vector<Point_2> star_shaped = {
Point_2(0.0, 0.0), Point_2( 0.1, -0.8), Point_2(0.3, 0.0), Point_2(0.6, -0.5),
Point_2(0.6, 0.1), Point_2( 1.1, 0.6), Point_2(0.3, 0.2), Point_2(0.1, 0.8),
Point_2(0.1, 0.2), Point_2(-0.7, 0.0) };
// Construct some interior points in the polygon.
const std::vector<Point_2> interior_points = {
Point_2(0.12, -0.45), Point_2(0.55, -0.3), Point_2(0.9 , 0.45),
Point_2(0.15, 0.35), Point_2(-0.4, 0.04), Point_2(0.11, 0.11),
Point_2(0.28, 0.12), // the only point in the kernel of the star shaped polygon
Point_2(0.55, 0.11) };
// Choose a computation policy.
// We do not check for edge cases since we know
// that all our points are strictly interior.
const Policy policy = Policy::PRECISE;
// Create a vector `std::vector` to store coordinates.
std::vector<FT> coordinates;
coordinates.reserve(star_shaped.size());
// Compute mean value coordinates for all interior points.
std::cout << std::endl << "mean value coordinates (interior): " << std::endl << std::endl;
for (const auto& query : interior_points) {
coordinates.clear();
star_shaped, query, std::back_inserter(coordinates), policy);
// Output mean value coordinates.
for (std::size_t i = 0; i < coordinates.size() - 1; ++i) {
std::cout << coordinates[i] << ", ";
}
std::cout << coordinates[coordinates.size() - 1] << std::endl;
}
std::cout << std::endl;
return EXIT_SUCCESS;
}