CGAL 5.5.4 - Polygon Mesh Processing
Polygon_mesh_processing/hole_filling_visitor_example.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Polygon_mesh_processing/triangulate_hole.h>
#include <CGAL/Polygon_mesh_processing/border.h>
#include <CGAL/Polygon_mesh_processing/IO/polygon_mesh_io.h>
#include <CGAL/Real_timer.h>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <iterator>
#include <string>
#include <tuple>
#include <vector>
#include <stdexcept>
typedef CGAL::Real_timer Timer;
typedef Kernel::Point_3 Point;
typedef boost::graph_traits<Mesh>::vertex_descriptor vertex_descriptor;
typedef boost::graph_traits<Mesh>::halfedge_descriptor halfedge_descriptor;
typedef boost::graph_traits<Mesh>::face_descriptor face_descriptor;
bool is_small_hole(halfedge_descriptor h, Mesh & mesh,
double max_hole_diam, int max_num_hole_edges)
{
int num_hole_edges = 0;
CGAL::Bbox_3 hole_bbox;
for (halfedge_descriptor hc : CGAL::halfedges_around_face(h, mesh))
{
const Point& p = mesh.point(target(hc, mesh));
hole_bbox += p.bbox();
++num_hole_edges;
// Exit early, to avoid unnecessary traversal of large holes
if (num_hole_edges > max_num_hole_edges) return false;
if (hole_bbox.xmax() - hole_bbox.xmin() > max_hole_diam) return false;
if (hole_bbox.ymax() - hole_bbox.ymin() > max_hole_diam) return false;
if (hole_bbox.zmax() - hole_bbox.zmin() > max_hole_diam) return false;
}
return true;
}
struct Stop : std::exception
{
Stop()
{}
};
struct Progress :
public PMP::Hole_filling::Default_visitor
{
Progress(double time_limit)
: time_limit(time_limit)
{}
Progress(const Progress&) = delete;
void start_planar_phase() const
{
std::cout << "Start planar phase"<< std::endl;
}
void end_planar_phase(bool success) const
{
std::cout << "End planar phase " << (success? "(success)" : "(failed)") << std::endl;
}
void start_quadratic_phase(std::size_t n)
{
timer.start();
quadratic_i = 0;
quadratic_n = n;
quadratic_report = n / 10;
std::cout << "Start quadratic phase with estimated " << n << " steps" << std::endl;
}
void quadratic_step()
{
if (quadratic_i++ == quadratic_report) {
std::cout << double(quadratic_i) / double(quadratic_n) * 100 << "%" << std::endl;
quadratic_report += quadratic_n / 10;
}
}
void end_quadratic_phase(bool success) const
{
timer.stop();
std::cout << "End quadratic phase " << timer.time() << " sec. " << (success ? "(success)" : "(failed)") << std::endl;
timer.reset();
}
void start_cubic_phase(std::size_t n)
{
timer.start();
cubic_n = n;
cubic_report = n / 10;
std::cout << "Start cubic phase with " << n << " steps" << std::endl;
}
void cubic_step()
{
if (timer.time() > time_limit) {
std::cout << "Let's stop here" << std::endl;
throw Stop();
}
if (cubic_i++ == cubic_report) {
std::cout << double(cubic_i) / double(cubic_n) * 100 << "%" << std::endl;
cubic_report += cubic_n / 10;
}
}
void end_cubic_phase() const
{
std::cout << "End cubic phase " << timer.time() << " sec. " << std::endl;
}
mutable Timer timer;
double time_limit;
std::size_t quadratic_n = 0, quadratic_i = 0, quadratic_report = 0;
std::size_t cubic_n = 0, cubic_i = 0, cubic_report = 0;
};
// Incrementally fill the holes that are no larger than given diameter
// and with no more than a given number of edges (if specified).
int main(int argc, char* argv[])
{
const std::string filename = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/mech-holes-shark.off");
Mesh mesh;
if(!PMP::IO::read_polygon_mesh(filename, mesh))
{
std::cerr << "Invalid input." << std::endl;
return 1;
}
// Both of these must be positive in order to be considered
double max_hole_diam = (argc > 2) ? boost::lexical_cast<double>(argv[2]): -1.0;
int max_num_hole_edges = (argc > 3) ? boost::lexical_cast<int>(argv[3]) : -1;
unsigned int nb_holes = 0;
std::vector<halfedge_descriptor> border_cycles;
// collect one halfedge per boundary cycle
PMP::extract_boundary_cycles(mesh, std::back_inserter(border_cycles));
for(halfedge_descriptor h : border_cycles)
{
if(max_hole_diam > 0 && max_num_hole_edges > 0 &&
!is_small_hole(h, mesh, max_hole_diam, max_num_hole_edges))
continue;
std::vector<face_descriptor> patch_facets;
std::vector<vertex_descriptor> patch_vertices;
Progress progress(10.0);
bool success = false;
try {
success = std::get<0>(PMP::triangulate_refine_and_fair_hole(mesh,
h,
std::back_inserter(patch_facets),
std::back_inserter(patch_vertices),
CGAL::parameters::visitor(std::ref(progress)).use_delaunay_triangulation(true)));
}
catch (const Stop&) {
std::cout << "We stopped with a timeout" << std::endl;
}
std::cout << "* Number of facets in constructed patch: " << patch_facets.size() << std::endl;
std::cout << " Number of vertices in constructed patch: " << patch_vertices.size() << std::endl;
std::cout << " Is fairing successful: " << success << std::endl;
++nb_holes;
}
std::cout << std::endl;
std::cout << nb_holes << " holes have been filled" << std::endl;
CGAL::IO::write_polygon_mesh("filled_SM.off", mesh, CGAL::parameters::stream_precision(17));
std::cout << "Mesh written to: filled_SM.off" << std::endl;
return 0;
}