CGAL 5.5.4 - 2D Triangulations on the Sphere
Triangulation_on_sphere_2/triang_on_sphere.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_on_sphere_traits_2.h>
#include <CGAL/Delaunay_triangulation_on_sphere_2.h>
typedef Traits::Point_3 Point_3;
int main(int, char**)
{
std::vector<Point_3> points;
points.emplace_back( 2, 1, 1);
points.emplace_back(-2, 1, 1); // not on the sphere
points.emplace_back( 0, 1, 1);
points.emplace_back( 1, 2, 1);
points.emplace_back( 0, 1, 1); // duplicate of #3
points.emplace_back( 1, 0, 1);
points.emplace_back( 1, 1, 2);
Traits traits(Point_3(1, 1, 1), 1); // sphere center on (1,1,1), with radius 1
DToS2 dtos(traits);
for(const Point_3& pt : points)
{
std::cout << "Inserting (" << pt
<< ") at squared distance " << CGAL::squared_distance(pt, traits.center())
<< " from the center of the sphere; is it on there sphere? "
<< (traits.is_on_sphere(pt) ? "yes" : "no") << std::endl;
dtos.insert(pt);
std::cout << "After insertion, the dimension of the triangulation is: " << dtos.dimension() << "\n";
std::cout << "It has:\n";
std::cout << dtos.number_of_vertices() << " vertices\n";
std::cout << dtos.number_of_edges() << " edges\n";
std::cout << dtos.number_of_solid_faces() << " solid faces\n";
std::cout << dtos.number_of_ghost_faces() << " ghost faces\n" << std::endl;
}
CGAL::IO::write_OFF("result.off", dtos, CGAL::parameters::stream_precision(17));
return EXIT_SUCCESS;
}