#include <cassert>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
#ifdef CGAL_USE_GMP
#else
#endif
<int**,
int*,
int*>
Program;
int main() {
int Ax1[] = { 1, -1};
int Ax2[] = { 3, 1};
int* A[] = {Ax1, Ax2};
int b[] = { 1, -1};
int c[] = { 1, 2};
Program lp (2, 2, A, b, r, c);
assert (s.is_optimal());
Solution::Variable_value_iterator x =
s.variable_values_begin();
Solution::Optimality_certificate_iterator y =
s.optimality_certificate_begin();
assert (y[0] >= 0);
assert (y[1] >= 0);
assert (y[0] * A[0][0] + y[1] * A[0][1] >= -c[0]);
assert (y[0] * A[1][0] + y[1] * A[1][1] >= -c[1]);
assert (y[0] * b[0] + y[1] * b[1] == -c[0] * x[0] - c[1] * x[1]);
return 0;
}
An object of class Nonnegative_linear_program_from_iterators describes a linear program of the form.
Definition: QP_models.h:318
An object of class Quadratic_program_solution represents the solution of a linear or convex quadratic...
Definition: QP_solution.h:65
Quadratic_program_solution< ET > solve_nonnegative_linear_program(const NonnegativeLinearProgram &lp, const ET &, const Quadratic_program_options &options=Quadratic_program_options())
This function solves a nonnegative linear program, using some exact Integral Domain ET for its comput...