#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/point_generators_3.h>
#include <vector>
#include <cassert>
typedef Delaunay::Point Point;
typedef Delaunay::Cell_handle Cell_handle;
typedef Delaunay::Facet Facet;
int main()
{
Delaunay T;
CGAL::Random_points_in_sphere_3<Point> rnd;
T.insert(Point(1,0,0));
T.insert(Point(0,1,0));
T.insert(Point(0,0,1));
assert(T.dimension() == 3);
for (int i = 0; i != 100; ++i) {
Point p = *rnd++;
Delaunay::Locate_type lt;
int li, lj;
Cell_handle c = T.locate(p, lt, li, lj);
if (lt == Delaunay::VERTEX)
continue;
std::vector<Cell_handle> V;
Facet f;
T.find_conflicts(p, c,
std::back_inserter(V));
if ((V.size() & 1) == 0)
T.insert_in_hole(p, V.begin(), V.end(), f.first, f.second);
}
std::cout << "Final triangulation has " << T.number_of_vertices()
<< " vertices." << std::endl;
return 0;
}
The class Delaunay_triangulation_3 represents a three-dimensional Delaunay triangulation.
Definition: Delaunay_triangulation_3.h:65
Vertex_handle insert(const Point &p, Cell_handle start=Cell_handle(), bool *could_lock_zone=nullptr)
Inserts the point p in the triangulation and returns the corresponding vertex.