CGAL::greene_approx_convex_partition_2

Definition

Function that produces a set of convex polygons that represent a partitioning of a polygon defined on a sequence of points. The number of convex polygons produced is no more than four times the minimal number.

#include <CGAL/partition_2.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator
greene_approx_convex_partition_2 ( InputIterator first,
InputIterator beyond,
OutputIterator result,
Traits traits = Default_traits)
computes a partition of the polygon defined by the points in the range [first, beyond) into convex polygons. The counterclockwise-oriented partition polygons are written to the sequence starting at position result. The past-the-end iterator for the resulting sequence of polygons is returned.
Precondition: The points in the range [first, beyond) define a simple, counterclockwise-oriented polygon.

Requirements

  1. Traits is a model of the concepts PartitionTraits_2 and YMonotonePartitionTraits_2. For the purpose of checking the validity of the y-monotone partition produced as a preprocessing step for the convex partitioning, it must also be a model of YMonotonePartitionIsValidTraits_2. For the purpose of checking the postcondition that the convex partition is valid, Traits must also be a model of ConvexPartitionIsValidTraits_2.
  2. OutputIterator::value_type is equivalent to Traits::Polygon_2.
  3. InputIterator::value_type is equivalent to Traits::Point_2, which should also be equivalent to the type of the points stored in an object of type Traits::Polygon_2.

The default traits class Default_traits is Partition_traits_2, with the representation type determined by InputIterator::value_type.

See Also

CGAL::approx_convex_partition_2
CGAL::convex_partition_is_valid_2
CGAL::optimal_convex_partition_2
CGAL::partition_is_valid_2
CGAL::y_monotone_partition_2

Implementation

This function implements the approximation algorithm of Greene [Gre83] and requires O(n logn) time and O(n) space to produce a convex partitioning given a y-monotone partitioning of a polygon with n vertices. The function y_monotone_partition_2 is used to produce the monotone partition.

Example

The following program computes an approximately optimal convex partitioning of a polygon using the default traits class and stores the partition polygons in the list partition_polys.

File: examples/Partition_2/greene_approx_convex_partition_2.cpp
#include <CGAL/basic.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/partition_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <cassert>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Partition_traits_2<K>                         Traits;
typedef Traits::Point_2                                     Point_2;
typedef Traits::Polygon_2                                   Polygon_2;
typedef Polygon_2::Vertex_iterator                          Vertex_iterator;
typedef std::list<Polygon_2>                                Polygon_list;
typedef CGAL::Creator_uniform_2<int, Point_2>               Creator;
typedef CGAL::Random_points_in_square_2< Point_2, Creator > Point_generator;

void make_polygon(Polygon_2& polygon)
{
   polygon.push_back(Point_2(391, 374));
   polygon.push_back(Point_2(240, 431));
   polygon.push_back(Point_2(252, 340));
   polygon.push_back(Point_2(374, 320));
   polygon.push_back(Point_2(289, 214));
   polygon.push_back(Point_2(134, 390));
   polygon.push_back(Point_2( 68, 186));
   polygon.push_back(Point_2(154, 259));
   polygon.push_back(Point_2(161, 107));
   polygon.push_back(Point_2(435, 108));
   polygon.push_back(Point_2(208, 148));
   polygon.push_back(Point_2(295, 160));
   polygon.push_back(Point_2(421, 212));
   polygon.push_back(Point_2(441, 303));
}


int main()
{
   Polygon_2    polygon;
   Polygon_list partition_polys;
   Traits       partition_traits;

/*
   CGAL::random_polygon_2(50, std::back_inserter(polygon),
                          Point_generator(100));
*/
   make_polygon(polygon);
   CGAL::greene_approx_convex_partition_2(polygon.vertices_begin(),
                                          polygon.vertices_end(),
                                          std::back_inserter(partition_polys),
                                          partition_traits);
   assert(CGAL::convex_partition_is_valid_2(polygon.vertices_begin(),
                                            polygon.vertices_end(),
                                            partition_polys.begin(),
                                            partition_polys.end(),
                                            partition_traits));
   return 0;
}