ArrTraits::CompareXAtLimit_2

Refines

AdaptableFunctor

Has Models

ArrangementOpenBoundaryTraits_2::Compare_x_at_limit_2

Comparison_result fo ( ArrTraits::Point_2 p , ArrTraits::X_monotone_curve_2 xcv , Arr_curve_end ce )
Given a point p, an x-monotone curve xcv, and an enumeration ce that specifies either the minimum or the maximum end of the curve where the curve has a vertical asymptote, compares the x-coordinate of p and the x-coordinate of the limit of the curve at its specificed end. The variable xcv identifies the parametric curve C(t) = (X(t),Y(t)) defined over an open or half-open interval with endpoints 0 and 1. The enumeration ce identifies an open end d {0,1} of C. Formally, compares the x-coordinate of p and lim t d X(t). Returns SMALLER, EQUAL, or LARGER accordingly.
Precondition: parameter_space_in_y_2(xcv, ce) ARR_INTERIOR.
Precondition: If the parameter space is unbounded, C has a vertical asymptote at its d-end; that is, parameter_space_in_x_2(xcv, ce) = ARR_INTERIOR.

Comparison_result
fo ( ArrTraits::X_monotone_curve_2 xcv1 ,
Arr_curve_end ce1 ,
ArrTraits::X_monotone_curve_2 xcv2 ,
Arr_curve_end ce2 )
Given two x-monotone curves xcv1 and xcv2 and two indices ce1 and ce2 that specify either the minimum or the maximum ends of xcv1 and xcv2, respectively, where the curves have vertical asymptotes, compares the x-coordinates of the limits of the curves at their specificed ends. The variables xcv1 and xcv2 identify the parametric curves C1(t) = (X1(t),Y1(t)) and C2(t) = (X2(t),Y2(t)), respectively, defined over open or half-open intervals with endpoints 0 and 1. The indices ce1 and ce2 identify open ends d1 {0,1} and d2 {0,1} of C1 and C2, respectively. Formally, compares lim t d1 X1(t) and lim t d2 X2(t). Returns SMALLER, EQUAL, or LARGER accordingly.
Precondition: parameter_space_in_y_2(xcv1, ce1) ARR_INTERIOR.
Precondition: parameter_space_in_y_2(xcv2, ce2) ARR_INTERIOR.
Precondition: If the parameter space is unbounded, C1 has a vertical asymptote at its respective end; that is,
parameter_space_in_x_2(xcv1, ce1) = ARR_INTERIOR.
Precondition: If the parameter space is unbounded, C2 has a vertical asymptote at its respective end; that is,
parameter_space_in_x_2(xcv2, ce2) = ARR_INTERIOR.