Direction_2<Kernel> d ( Vector_2<Kernel> v); | |
introduces the direction d of vector v.
| |
Direction_2<Kernel> d ( Line_2<Kernel> l); | |
introduces the direction d of line l.
| |
Direction_2<Kernel> d ( Ray_2<Kernel> r); | |
introduces the direction d of ray r.
| |
Direction_2<Kernel> d ( Segment_2<Kernel> s); | |
introduces the direction d of segment s.
| |
Direction_2<Kernel> d ( Kernel::RT x, Kernel::RT y); | |
introduces a direction d passing through the origin
and the point with Cartesian coordinates (x, y).
|
Kernel::RT | d.delta ( int i) const |
returns values, such that d== Direction_2<Kernel>(delta(0),delta(1)).
| ||
Kernel::RT | d.dx () const | returns delta(0). | ||
Kernel::RT | d.dy () const | returns delta(1). |
There is a total order on directions. We compare the angles between the positive x-axis and the directions in counterclockwise order.
bool | d.operator== ( e) const | |
bool | d.operator!= ( e) const | |
bool | d.operator< ( e) const | |
bool | d.operator> ( e) const | |
bool | d.operator<= ( e) const | |
bool | d.operator>= ( e) const |
Furthermore, we have
bool | d.counterclockwise_in_between ( d1, d2) const | |
returns true, iff d is not equal to d1, and while rotating counterclockwise starting at d1, d is reached strictly before d2 is reached. Note that true is returned if d1 == d2, unless also d == d1. | ||
Direction_2<Kernel> | d.operator- () const | The direction opposite to d. |
Vector_2<Kernel> | d.vector () const | returns a vector that has the same direction as d. |
Direction_2<Kernel> | d.transform ( Aff_transformation_2<Kernel> t) const | |
returns the direction obtained by applying t on d. |