Triangle_3<Kernel> t ( Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r); | |
introduces a triangle t with vertices p, q and r.
|
bool | t.operator== ( t2) const | Test for equality: two triangles t and t2 are equal, iff there exists a cyclic permutation of the vertices of t2, such that they are equal to the vertices of t. |
bool | t.operator!= ( t2) const | Test for inequality. |
Point_3<Kernel> | t.vertex ( int i) const | returns the i'th vertex modulo 3 of t. |
Point_3<Kernel> | t.operator[] ( int i) const | returns vertex(int i). |
Plane_3<Kernel> | t.supporting_plane () | returns the supporting plane of t, with same orientation. |
bool | t.is_degenerate () const | t is degenerate if its vertices are collinear. |
bool | t.has_on ( Point_3<Kernel> p) const | |
A point is on t, if it is on a vertex, an edge or the face of t. |
Kernel::FT | t.squared_area () const | returns a square of the area of t. |
Bbox_3 | t.bbox () const | returns a bounding box containing t. |
Triangle_3<Kernel> | t.transform ( Aff_transformation_3<Kernel> at) const | |
returns the triangle obtained by applying at on the three vertices of t. |