\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Bounding Volumes
ApproximateMinEllipsoid_d_Traits_d Concept Reference

Definition

Types

typedef unspecified_type FT
 typedef double FT
 
typedef unspecified_type ET
 Some model of concept RingNumberType that provides exact arithmetic. More...
 
typedef unspecified_type Point
 Type of the input points. More...
 
typedef unspecified_type Cartesian_const_iterator
 Model for the STL concept RandomAccessIterator whose value type must be convertible to double. More...
 

Access Functions

int dimension (const Point &p)
 returns the dimension of a point p.
 
Cartesian_const_iterator cartesian_begin (const Point &p)
 returns an input iterator over the Euclidean coordinates of the point \( p\). More...
 

Member Typedef Documentation

◆ Cartesian_const_iterator

Model for the STL concept RandomAccessIterator whose value type must be convertible to double.

This type is used to iterate over the Cartesian coordinates of an instance of type Point, see cartesian_begin() below.

◆ ET

Some model of concept RingNumberType that provides exact arithmetic.

In addition, ET must be able to exactly represent any finite double value. (An example for such a type is CGAL::MP_Float.). The type ET is to be used by the Approximate_min_ellipsoid_d<Traits> class for internal, exact computations.

◆ Point

Type of the input points.

Point must provide the default and copy constructor, and must be a model of DefaultConstructible, CopyConstructible, and Assignable.

Member Function Documentation

◆ cartesian_begin()

Cartesian_const_iterator ApproximateMinEllipsoid_d_Traits_d::cartesian_begin ( const Point p)

returns an input iterator over the Euclidean coordinates of the point \( p\).

The range of the iterator must have size dimension(p).