\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10 - 2D Generalized Barycentric Coordinates
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Bibliographic References

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Proceedings of SIGGRAPH '95, pages 173–182, 1995.


M. S. Floater, K. Hormann, and G. Kòs. A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics, 24(1-4):311–331, 2006.


Michael Floater. Mean value coordinates. Computer Aided Design, 20(1):19–27, 2003.


M. S. Floater. Wachspress and mean value coordinates. In Proceedings of the 14th International Conference on Approximation Theory, G. Fasshauer and L. L. Schumaker (eds.), 2014.


K. Hormann and M. S. Floater. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics, 25(4):1424–1441, 2006.


M. Meyer, H. Lee, A. H. Berr, and M. Desbrun. Generalized barycentric coordinates on irregular polygons. Journal of Graphics Tools, 7(1):13–22, 2002.


A. F. Möbius. Der Barycentrische Calcul. Johann Ambrosius Barth, Leipzig, 1827.


U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15–36, 1993.


E. L. Wachspress. A Rational Finite Element Basis. Academic Press, New York, 1975.