\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - Manual
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages

CGAL provides a large number of data structures and algorithms dedicated to various applications.

Most of these data structures and algorithms can be combined to achieve extensive and complex geometric tasks. The tutorials aim at providing help and ideas on how to use CGAL beyond the simple examples of the User Manual.

List of available tutorials

  • Hello World presents you some short example programs to get a first idea for the look and feel of a program that uses CGAL. We introduce the notion of the kernel which defines geometric primitives, the notion of traits classes which define what primitives are used by a geometric algorithm, the notions of concept and model.