CGAL 6.0.1 - Modular Arithmetic
Loading...
Searching...
No Matches
Class and Concept List
Here is the list of all concepts and classes of this package. Classes are inside the namespace CGAL. Concepts are in the global namespace.
[detail level 12]
 NCGAL
 CModular_traitsAn instance of Modular_traits is a model of ModularTraits, where T is the associated type
 CResidue
 CModularizableAn algebraic structure is called Modularizable, if there is a suitable mapping into an algebraic structure which is based on the type CGAL::Residue. For scalar types, e.g. Integers, this mapping is just the canonical homomorphism into the type CGAL::Residue with respect to the current prime. For compound types, e.g. Polynomials, the mapping is applied to the coefficients of the compound type
 CModularTraitsA model of ModularTraits is associated to a specific Type. In case this associated type is a model of Modularizable, this is indicated by the Boolean tag ModularTraits::Is_modularizable. The mapping into the Residue_type is provided by the functor ModularTraits::Modular_image
 CModularImageThis AdaptableUnaryFunction computes the modular image of the given value with respect to a homomorphism \( \varphi\) from the ModularTraits::Type into the ModularTraits::Residue_type
 CModularImageRepresentativeThis AdaptableUnaryFunction returns a representative in the original type of a given modular image. More precisely, it implements the right inverse of a proper restriction of the homomorphism \( \varphi\), which is implemented by ModularTraits::ModularImage