\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.1 - Algebraic Foundations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
EuclideanRing Concept Reference

Definition

A model of EuclideanRing represents an euclidean ring (or Euclidean domain). It is an UniqueFactorizationDomain that affords a suitable notion of minimality of remainders such that given \( x\) and \( y \neq 0\) we obtain an (almost) unique solution to \( x = qy + r \) by demanding that a solution \( (q,r)\) is chosen to minimize \( r\). In particular, \( r\) is chosen to be \( 0\) if possible.

Moreover, CGAL::Algebraic_structure_traits< EuclideanRing > is a model of AlgebraicStructureTraits providing:

Remarks

The most prominent example of a Euclidean ring are the integers. Whenever both \( x\) and \( y\) are positive, then it is conventional to choose the smallest positive remainder \( r\).

Refines:
UniqueFactorizationDomain
See Also
IntegralDomainWithoutDivision
IntegralDomain
UniqueFactorizationDomain
EuclideanRing
Field
FieldWithSqrt
FieldWithKthRoot
FieldWithRootOf
AlgebraicStructureTraits