\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.1 - 2D Regularized Boolean Set-Operations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
ArrDirectionalTraits::Split_2 Concept Reference

Definition

Operations

A model of this concept must provide:

void operator() (ArrDirectionalTraits::X_monotone_curve_2 xc, ArrDirectionalTraits::Point_2 p, ArrDirectionalTraits::X_monotone_curve_2 &xc1, ArrDirectionalTraits::X_monotone_curve_2 &xc2)
 accepts an input curve xc and a split point p in its interior. More...
 

Member Function Documentation

void ArrDirectionalTraits::Split_2::operator() ( ArrDirectionalTraits::X_monotone_curve_2  xc,
ArrDirectionalTraits::Point_2  p,
ArrDirectionalTraits::X_monotone_curve_2 &  xc1,
ArrDirectionalTraits::X_monotone_curve_2 &  xc2 
)

accepts an input curve xc and a split point p in its interior.

It splits xc at the split point into two subcurves xc1 and xc2, such that p is xc1's right endpoint and xc2's left endpoint. The direction of xc is preserved. That is, in case xc is directed from left to right, p becomes xc1's target and c2's source; otherwise, p becomes xc2's target and xc1's source.