CGAL 4.10.1 - Bounding Volumes
|
#include <CGAL/Min_ellipse_2_traits_2.h>
The class Min_ellipse_2_traits_2
is a traits class for CGAL::Min_ellipse_2<Traits>
using the two-di-men-sional CGAL kernel.
The template parameter K
must be a model for Kernel
.
CGAL::Min_ellipse_2<Traits>
MinEllipse2Traits
Types | |
typedef unspecified_type | Point |
typedef to K::Point_2 . | |
typedef unspecified_type | Ellipse |
internal type. | |
Access Functions | |
The Ellipse type provides the following access methods not required by the concept | |
bool | is_circle () |
tests whether the ellipse is a circle. | |
void | double_coefficients (double &r, double &s, double &t, double &u, double &v, double &w) |
gives a double approximation of the ellipse's conic equation. More... | |
Creation | |
Min_ellipse_2_traits_2 () | |
default constructor. | |
Min_ellipse_2_traits_2 (const Min_ellipse_2_traits_2< K > &) | |
copy constructor. | |
void CGAL::Min_ellipse_2_traits_2< K >::double_coefficients | ( | double & | r, |
double & | s, | ||
double & | t, | ||
double & | u, | ||
double & | v, | ||
double & | w | ||
) |
gives a double approximation of the ellipse's conic equation.
If K
is a Cartesian kernel, the ellipse is the set of all points \( (x,y)\) satisfying \( rx^2+sy^2+txy+ux+vy+w=0\). In the Homogeneous case, the ellipse is the set of points \( (hx,hy,hw)\) satisfying \( r(hx)^2+s(hy)^2+t(hx)(hy)+u(hx)(hw)+v(hy)(hw)+w(hw)^2=0\).