\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.1 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::do_intersect() (2D Circular Kernel)

bool CGAL::do_intersect (Type1< CircularKernel > obj1, Type2< CircularKernel > obj2)
 checks whether obj1 and obj2 intersect. More...
 

Function Documentation

bool CGAL::do_intersect ( Type1< CircularKernel obj1,
Type2< CircularKernel obj2 
)

checks whether obj1 and obj2 intersect.

See Chapter Chapter_2D_Circular_Geometry_Kernel for details on a circular kernel instantiation.

When using a circular kernel, in addition to the function overloads documented here, the following function overloads are also available.

Two objects obj1 and obj2 intersect if there is a point p that is part of both obj1 and obj2. The intersection region of those two objects is defined as the set of all points p that are part of both obj1 and obj2. Note that while for a polygon we consider the enclosed domain, for an object of type Circle_2 only the curve is considered.

Type1 and Type2 can be any of the following:

An example illustrating this is presented in Chapter Chapter_2D_Circular_Geometry_Kernel.

#include <CGAL/Circular_kernel_intersections.h>