|
CGAL 4.10.1 - 3D Periodic Triangulations
|
The concept Periodic_3DelaunayTriangulationTraits_3 is the first template parameter of the classes Periodic_3_Delaunay_triangulation_3. It refines the concept DelaunayTriangulationTraits_3 from the CGAL 3D Triangulations. It redefines the geometric objects, predicates and constructions to work with point-offset pairs. In most cases the offsets will be (0,0,0) and the predicates from DelaunayTriangulationTraits_3 can be used directly. For efficiency reasons we maintain for each functor the version without offsets.
In addition to the requirements described for the traits class DelaunayTriangulationTraits_3, the geometric traits class of a Periodic Delaunay triangulation must fulfill the following requirements.
| typedef unspecified_type | Side_of_oriented_sphere_3 |
| A predicate object that must provide the function operators. More... | |
| typedef unspecified_type | Compare_distance_3 |
| A predicate object that must provide the function operators. More... | |
In addition, only when vertex removal is used, the traits class must provide the following predicate objects | |
| typedef unspecified_type | Coplanar_orientation_3 |
| A predicate object that must provide the function operators. More... | |
| typedef unspecified_type | Coplanar_side_of_bounded_circle_3 |
| A predicate object that must provide the function operators. More... | |
In addition, only when | |
| typedef unspecified_type | Side_of_bounded_sphere_3 |
| A predicate object that must provide the function operators. More... | |
In addition, only when the dual operations are used, the traits class must provide the following constructor object: | |
| typedef unspecified_type | Construct_circumcenter_3 |
| A constructor object that must provide the function operators. More... | |
Creation | |
| Periodic_3_Delaunay_triangulation_traits_3 () | |
| Default constructor. | |
| Periodic_3_Delaunay_triangulation_traits_3 (const Periodic_triangulation_traits_3 &tr) | |
| Copy constructor. | |
Operations | |
The following functions give access to the predicate and construction objects: | |
| Side_of_oriented_sphere_3 | side_of_oriented_sphere_3_object () |
| Compare_distance_3 | compare_distance_3_object () |
The following functions must be provided if vertex removal is used; otherwise dummy functions can be provided. | |
| Coplanar_orientation_3 | coplanar_3_orientation_3_object () |
| Coplanar_side_of_bounded_circle_3 | coplanar_side_of_bounded_circle_3_object () |
The following function must be provided only if the | |
| Side_of_bounded_sphere_3 | side_of_bounded_sphere_3_object () |
The following function must be provided only if the methods of | |
| Construct_circumcenter_3 | construct_circumcenter_3_object () |
A predicate object that must provide the function operators.
Comparison_result operator()(Point_3 p, Point_3 q, Point_3 r),
which compares the distance between p and q to the distance between p and r and
Comparison_result operator()(Point_3 p, Point_3 q, Point_3 r, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r),
which compares the distance between (p,o_p) and (q,o_q) to the distance between (p,o_p) and (r,o_r).
p, q, r lie inside the domain. A constructor object that must provide the function operators.
Point_3 operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s),
which constructs the circumcenter of four points and
Point_3 operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s),
which constructs the circumcenter of four point-offset pairs.
p, q, r and s as well as (p,o_p), (q,o_q), (r,o_r) and (s,o_s) must be non coplanar. p, q, r, s lie inside the domain. A predicate object that must provide the function operators.
Orientation operator()(Point_3 p, Point_3 q, Point_3 r),
which returns COLLINEAR, if the points are collinear; otherwise it must return a consistent orientation for any three points chosen in a same plane and
Orientation operator()(Point_3 p, Point_3 q, Point_3 r Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r),
which returns COLLINEAR, if the point-offset pairs are collinear; otherwise it must return a consistent orientation for any three point-offset pairs chosen in a same plane.
p, q, r lie inside the domain. A predicate object that must provide the function operators.
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s),
which determines the bounded side of the circle defined by p, q, and r on which the point s lies and
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s),
which determines the bounded side of the circle defined by (p,o_p), (q,o_q), and (r,o_r) on which the point-offset pair (s,o_s) lies.
p,q,r, and s are coplanar and p,q, and r are not collinear, (p,o_p),(q,o_q),(r,o_r), and (s,o_s) are coplanar and (p,o_p),(q,o_q), and (r,o_r) are not collinear, respectively, and p, q, r, s, t lie inside the domain. A predicate object that must provide the function operators.
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 t),
which returns the position of the point t relative to the sphere that has pq as its diameter,
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_t),
which returns the position of the point-offset pair (t,o_t) relative to the sphere that has (p,o_p)(q,o_q) as its diameter,
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 t),
which returns the position of the point t relative to the sphere passing through p, q, and r and whose center is in the plane defined by these three points,
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_q),
which returns the position of the point-offset pair (t,o_t) relative to the sphere passing through (p,o_p), (q,o_q), and (r,o_r) and whose center is in the plane defined by these three point-offset pairs,
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Point_3 t),
which returns the relative position of point t to the sphere defined by p, q, r, and s; the order of the points p, q, r, and s does not matter, and
Bounded_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s, Periodic_3_offset_3 o_q),
which returns the relative position of the point-offset pair (t,o_t) to the sphere defined by (p,o_p), (q,o_q), (r,o_r), and (s,o_s); the order of the point-offset pairs (p,o_p), (q,o_q), (r,o_r), and (s,o_s) does not matter.
p, q, r, and s are not coplanar, (p,o_p), (q,o_q), (r,o_r), and (s,o_s) are not coplanar, p, q, r, s, t lie inside the domain. A predicate object that must provide the function operators.
Oriented_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Point_3 t),
which determines on which side of the oriented sphere circumscribing p, q, r, s the point t lies and
Oriented_side operator()(Point_3 p, Point_3 q, Point_3 r, Point_3 s, Point_3 t, Periodic_3_offset_3 o_p, Periodic_3_offset_3 o_q, Periodic_3_offset_3 o_r, Periodic_3_offset_3 o_s, Periodic_3_offset_3 o_t),
which determines on which side of the oriented sphere circumscribing (p,o_p), (q,o_q), (r,o_r), (s,o_s) the point-offset pair (t,o_t) lies.
p, q, r, s, t lie inside the domain.