\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.1 - CGAL and Solvers
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
SvdTraits Concept Reference

Definition

The concept SvdTraits describes the linear algebra types and algorithms needed to solve in the least square sense a linear system with a singular value decomposition.

Has Models:
CGAL::Eigen_svd

Concepts

conceptMatrix
 Concept of matrix type used by the concept SvdTraits. More...
 
conceptVector
 Concept of vector type used by the concept SvdTraits. More...
 

Types

typedef unspecified_type FT
 The scalar type.
 
typedef unspecified_type Vector
 The vector type, model of the concept SvdTraits::Vector.
 
typedef unspecified_type Matrix
 The matrix type, model of the concept SvdTraits::Matrix.
 

Operations

The concept SvdTraits has a linear solver using a singular value decomposition algorithm.

FT solve (const Matrix &M, Vector &B)
 Solves the system \( MX=B\) (in the least square sense if \( M\) is not square) using a singular value decomposition and returns the condition number of \( M\). More...
 

Member Function Documentation

FT SvdTraits::solve ( const Matrix M,
Vector B 
)

Solves the system \( MX=B\) (in the least square sense if \( M\) is not square) using a singular value decomposition and returns the condition number of \( M\).

The solution is stored in \( B\).