\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10.2 - Algebraic Foundations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
UniqueFactorizationDomain Concept Reference

Definition

A model of UniqueFactorizationDomain is an IntegralDomain with the additional property that the ring it represents is a unique factorization domain (a.k.a. UFD or factorial ring), meaning that every non-zero non-unit element has a factorization into irreducible elements that is unique up to order and up to multiplication by invertible elements (units). (An irreducible element is a non-unit ring element that cannot be factored further into two non-unit elements. In a UFD, the irreducible elements are precisely the prime elements.)

In a UFD, any two elements, not both zero, possess a greatest common divisor (gcd).

Moreover, CGAL::Algebraic_structure_traits< UniqueFactorizationDomain > is a model of AlgebraicStructureTraits providing:

Refines:
IntegralDomain
See Also
IntegralDomainWithoutDivision
IntegralDomain
UniqueFactorizationDomain
EuclideanRing
Field
FieldWithSqrt
FieldWithKthRoot
FieldWithRootOf
AlgebraicStructureTraits