\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10-I-196 - Generalized Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Generalized_map/gmap_3_operations.cpp
#include <CGAL/Generalized_map.h>
#include <iostream>
#include <cstdlib>
typedef CGAL::Generalized_map<3> GMap_3;
typedef GMap_3::Dart_handle Dart_handle;
int main()
{
GMap_3 gm;
// Create one combinatorial hexahedron.
Dart_handle d1 = gm.make_combinatorial_hexahedron();
// Add two edges along two opposite facets.
gm.insert_cell_1_in_cell_2(d1,gm.alpha<0,1,0>(d1));
CGAL_assertion( gm.is_valid() );
Dart_handle d2=gm.alpha<2,1,0,1,2>(d1);
gm.insert_cell_1_in_cell_2(d2,gm.alpha<0,1,0>(d2));
CGAL_assertion( gm.is_valid() );
// Insert a facet along these two new edges plus two initial edges
// of the hexahedron.
std::vector<Dart_handle> path;
path.push_back(gm.alpha<1>(d1));
path.push_back(gm.alpha<1,0,1,2,1>(d1));
path.push_back(gm.alpha<1,0>(d2));
path.push_back(gm.alpha<2,1>(d2));
Dart_handle d3=gm.insert_cell_2_in_cell_3(path.begin(),path.end());
CGAL_assertion( gm.is_valid() );
// Display the generalized map characteristics.
gm.display_characteristics(std::cout) << ", valid=" <<
gm.is_valid() << std::endl;
// We use the removal operations to get back to the initial hexahedron.
gm.remove_cell<2>(d3);
CGAL_assertion( gm.is_valid() );
gm.remove_cell<1>(gm.alpha<1>(d1));
CGAL_assertion( gm.is_valid() );
gm.remove_cell<1>(gm.alpha<1>(d2));
CGAL_assertion( gm.is_valid() );
CGAL_assertion( gm.is_volume_combinatorial_hexahedron(d1) );
// Display the generalized map characteristics.
gm.display_characteristics(std::cout) << ", valid="
<< gm.is_valid() << std::endl;
return EXIT_SUCCESS;
}